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Summary. Confidence interval estimators have not been 
defined for dominance to additive genetic variance (Q) 
and average degree of dominance (6) for the nested, fac- 
torial, and backcross mating designs. The objective of 
this paper was to describe interval estimators for these 
parameters. Approximate F random variables were de- 
fined for expected mean square (EMS) ratios for linear 
models with one environmental effect. Approximate 1 - 
parametric interval estimators were defined for Q and 6 
using these random variables. Random variables defined 
for linear models with no environmental effects are not 
approximately distributed as F random variables be- 
cause common EMS are involved in the numerators and 
denominators of the EMS ratios. Delete-one jackknife 
(jackknife) interval estimators were defined for Q and 6 for 
linear models with zero or one environmental effect (s); In 
transformed analysis of variance point estimates were 
used in pseudovalue estimators. 
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Introduction 

Inferences about variances or variance ratios are frequent 
in quantitative genetics; however, methods (hypothesis 
tests and interval estimators) needed for statistical infer- 
ences about variances or variance ratios are often lack- 
ing. Interval estimators and hypothesis tests have gener- 
ally been developed more slowly than point estimators. 
This reflects, in many cases anyway, the intractability or 
inadequacy of parametric methods. 

* Oregon Agricultural Experiment Station Technical Paper 
No. 8067 

The focus of our paper is statistical inference methods 
for genetic variance ratios. Comstock and Robinson 
(1948, 1952) described the variance ratios we investigated. 
These are nested (I), factorial (II), and backcross (III) 
mating design dominance to additive genetic variance 
(~  2 2 = ~d/~a) and average degree of dominance [~ = 

2 2 1/2 (2ad/aa) ] variance ratios. The assumption of equal 
allele frequencies (Pl =P2) was used to define Q and fi 
(Comstock and Robinson 1948, 1952). Variances or con- 
fidence intervals have not been defined for these parame- 
ters. 

Parametric methods have been used to define interval 
estimators for random linear model parameters similar to 
Q and 6 for balanced data. A parametric interval estima- 
tor may be defined for a parameter if it is a function of 
constants and a random variable with a known distribu- 
tion. A probability statement is defined for the random 
variable and subsequently transformed to obtain an in- 
terval estimator for the parameter. 

Graybill (1976) defined parametric interval estimators 
for some variance ratios. Bogyo and Becker (1963), 
Knapp et al. (1985), Knapp (1986), and Knapp and 
Bridges (1987) used parametric methods to define interval 
estimators for various expected mean square ratios. The 
common feature of these parameters is that each is a 
function of an expected mean square (EMS) ratio and 
constants. There are, nevertheless, numerous parameters 
that cannot be expressed as functions of an EMS ratio 
and constants; expected selection response is an example. 

A limitation of parametric interval estimators for 
variances or mean square ratios is that they are not ro- 
bust (Box 1953; Scheff6 1959); realized coverage proba- 
bilities may be greater or less than stated coverage proba- 
bilities when data are non-normal. Arvesen (1969) and 
Miller (1974a) recommend against parametric interval 
estimators for variances or mean square ratios because of 
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the robustness problem. They instead recommend jack- 
knife interval estimators. Arvesen (1969), Arvesen and 
Schmitz (1970), and Miller (1968, 1974a) have demon- 
strated that realized and stated coverage probabilities are 
approximately equal for jackknife interval estimators of 
these parameters for several random effect distributions, 
i.e., they are robust. 

Our  objectives were to define parametric and jack- 
knife interval estimators for 0 and ~ for the nested, fac- 
torial, and backcross mating designs and zero or one 
environmental effects(s) experiment designs. Parametric 
interval estimators were defined for Q and 6 for linear 
models with one environmental effect. Jackknife interval 
estimators were defined for Q and ~ for linear models with 
zero or one environmental effect(s). 

Confidence interval estimators 

Nested mating design 

The analysis of variance for the nested mating design and 
replications-in-incomplete blocks experiment design in 
one environment is given in Table 1. The relationships 
between males and females nested in males variances, 
genetic variances, and EMS are 

2 O" m = [E (M m ) - -  E (Mf)]/r f = COV (HS) = 1/4 a 2 

and 

af 2 = [E (Mr) -- E (Me) ]/r = COV(FS) : -  COV (HS) 

= 1/4 a 2 + 1/4 aa 2 , 

z is additive genetic variance, a ] is respectively, where a a 
dominance genetic variance, COV (HS) is the covariance 
among half-sib progenies, and COV (FS) is the covari- 
ance among full-sib progenies (Comstock and Robinson 
1952). Additive and dominance genetic variances are 

2 4 a2m and a 2 = 4 (af 2 2 a a = - -  f i r e )  , respectively. Epistatic 
variances were omitted for simplicity in these expressions 
and others in this paper. 

The males to females nested in males variance ratio 
expressed in terms of EMS is 

2 2 (7 m/O'f = { [E (M m ) - -  E (M e )] / [E (Mf) - -  E (M~)] - 1 }/f 

= [E (M'.)/E (M~) - 1]/f (1) 

= {[E (Mm) - -  E (Mf)]/[E (Mr) -- E (Mo)l}/f 

= [E (M")/E (M~)]/f (2) 

2 2 am/a r was expressed in terms of two EMS ratios E (M'n) / 
E(M~) and [E (M")/E(M~)]. There are no apparent ad- 
vantages to using (1) versus (2), therefore, additional re- 
sults are presented using (1) only. 

Dominance to additive genetic variance is 

2 2 ad/aa = {[E (M'n)/E (M~) -- 1]/f}-1 _ 1. (3) 

R = [M'n/E (M',)]/[M~/E (M~)] is the random variable re- 
quired for defining a parametric interval for (3). M'  n and 
M~ in (3) are mean square differences, therefore, approxi- 
mate degrees of freedom for M' n and M~ (df'. and dt~, 
respectively) may be estimated using standard methods 
(Satterthwaite 1946). The random variables U'n = df'n M'n/ 
E(M',) and Uh = df~Mh/E(Mh) may be approximately 
distributed chi-square (Graybill 1976). U .  and Ud are not, 
however, always approximately distributed as chi-square 
random variables because they involve mean square dif- 
ferences (Gaylor and Hopper 1969). 

An additional problem is that U'n and Uh are not 
approximately distributed as independent chi-square 
random variables. Mo and E (Me) are involved in U'  n and 
Uh, therefore, U'  n and U~ are not independent and R is 
not approximately distributed as an F random variable 
(Graybill 1976). We did not define parametric interval 
estimators for (3) for these reasons. 

Average degree of dominance expressed in terms of 
EMS and constants is 

2 2 1 / 2  (2ad/aa) = [ 2 ( { [ E ( M ' , ) / E ( M ~ ) - I ] / f }  - 1 - 1 ) ]  1/2. (4) 

Equation (4) uses the same EMS ratio used to define (3), 
therefore, parametric interval estimators were not defined 
for (4) either. 

Parametric interval estimators were not defined in the 
aforementioned cases because necessary distributional 
assumptions about U'  n and U~ were not met. Delete-one 
jackknifing, on the other hand, does not require distribu- 
tional assumptions about U'. and U~ (Miller 1968) and 
may be used to define interval estimators for (3) and (4). 

It is sufficient to define an interval estimator for 
E(M'n)/E(M~) in order to define interval estimators for 
(3) and (4), therefore, E(M',) /E(M~) was used in the de- 
scription of jackknifing. The parameters we investigated 
differ slightly from the parameters investigated by Miller 
(1968) and Arvesen and Schmitz (1970) in that they are 
functions of ratios of EMS differences. Arvesen and 
Schmitz (1970) and Miller (1968) demonstrated that it is 
necessary to use In transformed analysis of variance 
(ANOVA) mean square difference or ratio estimates in 
pseudovalue estimates to obtain accurate jackknife inter- 
val estimates. The distributions of mean square differ- 
ences and ratios are skewed, thus, requiring a 'variance 
stabilizing' transformation (Arvesen and Schmitz 1970; 
Miller 1968). We used In transformed ANOVA estimates, 
ln(M'n/M~), to define delete-one jackknife interval esti- 
mators for E(M',) /E(M~) for this reason. 

Delete-one jackknifing involves dividing the original 
data set into subsets of size one (all replications of one 
treatment in one-factor ANOVA), deleting a subset, cal- 
culating point estimates from the remaining data, and 
iterating the process until each size one subset has been 
deleted once. This process has been described for the 
one-factor experiment design (Miller 1974 a). 
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Table 1. Analysis of variance for the nested mating design and replications-in-incomplete blocks experiment design in one environment 

Source of variation Degrees of freedom" Mean square Expected mean square b 

Incomplete blocks (B) b -  1 
Replications: B b(r - 1) 
Males: B(M:B) d f  m = b(m -1)  M m a~ + ra  z + rfaZm 
Females: M: B d f f =  b m (f - 1) Mf a~ + r af z 
Residual df~ = b (r - 1) (m f - 1) M~ a, z 

a r is the number of replications, m is the number of male and f the number of female parents used to produce nested mating design 
progeny for one incomplete block, and b is the number of incomplete blocks 
b a~ is the residual, ~rg is the females nested in males, and a~ is the males variance 

Miller (1974 a) subsetted data into sets containing all 
replications of a factor level for the one-factor experiment 
design. This produces a subset number equal to the factor 
level number. Miller (1974a) considered this to be the 
least arbitrary subsetting strategy. 

The method used to resample the original data set is 
important in jackknifing. The optimum method is not 
clear for experiment designs more complex than the one- 
factor experiment design. Data resampling decisions are 
affected by the parameter of interest and mating and 
experiment designs. Data resampling alternatives for 
complex analyses, using the Table 1 analysis as an exam- 
ple, are considered below. 

The number of pseudovalues in a particular delete- 
one jackknifing problem is equal to the number of data 
subsets and determines the degrees of freedom for t- 
percentage points used in intervals (Miller 1974a). Data 
subsetting strategies resulting in balanced resampled 
data may give pseudovalue numbers different than strate- 
gies resulting in unbalanced resampled data. Consider an 
experiment where nested mating design progenies are 
grown in a completely randomized experiment design. 
Suppose m = 50 and f = 3 where m is the number of male 
parents and f is the number of female parents. Pseudo- 
value number is greater when data are subdivided into 
subsets consisting of all replications of one full-sib family 
(m f = 150 pseudovalues) instead of all replications of one 
half-sib family ( m =  50 pseudovalues); however, un- 
balanced data results when a subset consisting of r repli- 
cations of one full-sib family is deleted while balanced 
data results when a subset consisting of r replications of 
one half-sib family is deleted. 

Experiment design also complicates data resampling. 
Consider the Table 1 incomplete blocks experiment de- 
sign. Suppose that m = 5, f = 3, and b = 10 where b is the 
number of incomplete blocks. This gives m = 5 half-sib 
families and (m x f )=  15 full-sib families per incomplete 
block. A balanced data resampling strategy, where data 
subsets consist of all replications of one half-sib family 
from each incomplete block, results in m = 5 pseudo- 
values. Compare this to a strategy where subsets consist 
of all replications of one full-sib family from one incom- 

plete block. This strategy results in m f b  = 150 pseudo- 
values and is analogous in an important way to the 
resampling strategy used by Miller (1974a) for the one- 
factor experiment design. They are analogous because 
pseudovalue number is equal to full-sib family number in 
our example while pseudovalue number was equal to 
factor level number in the one-factor linear model (Miller 
1974a). This is important because simulations verifying 
the accuracy of jackknife interval estimators were based 
on equivalence between pseudovalue and factor level 
numbers (Arvesen and Schmitz 1970; Miller 1968). 

The problem of developing a data sampling (or re- 
sampling) plan for complex experiment designs is not 
unique to delete-one jackknifing. Felsenstein (1985) de- 
scribed similar problems in applying bootstrapping to 
phylogeny interval estimation. Bootstrap and jackknife 
variance estimation theory has naturally been developed 
using simple models (Efron 1979; Efron and Gong 1983; 
Wu 1986). The extension of bootstrapping and jackknif- 
ing to complex data structures is not always clear. The 
challenge we anticipate is in developing accurate interval 
estimators for complex data structures. This is not to say 
that the problem of jackknife or bootstrap variance esti- 
mation is trivial but that it is less complex than interval 
estimation and hypothesis testing problems. 

The problem of alternative resampling strategies has 
not been examined because previous research has largely 
been limited to one-factor linear model parameters. It is 
easy to achieve equivalence between pseudovalue and 
factor level numbers in the one-factor and other simple 
experiment designs without resorting to a data resam- 
piing plan yielding unbalanced data. 

The data resampling strategy used directly affects 
pseudovalue number (g) and, consequently, the value of 
t~: g_ ~ used in jackknife interval estimators. Jackknife in- 
terval estimate width decreases as t~:g_ t decreases and 
t~: g_ 1 decreases as g increases. Interval estimate accuracy 
depends on how resampling is done. The rationale for the 
data subsetting strategy we suggest, where pseudovalue 
and full-sib family or factor level numbers are equal, is 
this equivalence. 
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The difficulty introduced by the proposed  subsetting 
strategy is that  resampled da ta  is unbalanced.  We suggest 
using fitting constants  est imation (Searle 1971) in this 
case and assume that  jackknife variance and interval esti- 
mators  are accurate for general unbalanced linear model  
problems;  accuracy has been verified for one-factor linear 
model  problems (Arvesen and Layard  1971; Hinkley 
1977; Mil ler  1974 b). The accuracy assumption seems rea- 
sonable in view of the minor  unbalance associated with 
the proposed  da ta  resampling plan. 

Suppose that  jackknif ing is performed using the pro-  
posed da ta  resampling plan. There are, for the nested 
mat ing  design, m half-sib families, m f full-sib families, 
and  r replications in each incomplete  block (Table 1). 
Da t a  are divided into m fb  = g subsets containing r repli- 
cat ions of one full-sib family from one incomplete block. 
The ANOVA estimate of In [E (M'n)/E (M~)], est imated 
from the entire da ta  set, is denoted J~. The fitting con- 
stants (Searle 1971) estimate of In[E(M' , ) /E(M~)] ,  esti- 
mated  from data  remaining after the deletion of the ith 
subset, is denoted J~_ 1- Pseudovalue estimates are equal 
to Ji = g J g -  ( g - 1 ) J i g - 1  �9 They are calculated for each 
resampled da ta  set. This process is repeated until each 
subset has been deleted once, thus, producing g pseudo- 
value estimates (Ji). The pseudovalue mean (jackknife 
point  estimate) for In [E (M',) / E (M~)] is 2; Ji/g = J (Arve- 
sen and Schmitz 1970; Miller  1974a). 

The variance of Ji is S~ = [S(J  i - j ) 2 ] / ( g _  1), there- 
fore, 

t = {J - In [E(M',)/E(M'd)]}/(S,/g ~/2) 

is an approx imate  t r andom variable with g - 1 degrees of 
freedom (Arvesen and Schmitz 1970). An approximate  
1 - c~ interval es t imator  for In [E (M' , ) /E  (M~)] is 

J -- t,:g_ ~ Sj/g~/2, j + t~: g_ ~ Sj/g 1/2 = J -- t SJ', J + t S* (5) 

where t = ta:g_ a is a percentage point  from the t-distri- 
but ion with g - 1 degrees of freedom and S* = Sj/g 1/2 is 
the s tandard  error of a pseudovalue mean (Arvesen and 
Schmitz 1970; Miller 1974a). 

An approximate  1 - ~ jackknife interval es t imator  for 
(3) (dominance to additive genetic variance) from (5) is 

[ ( e ~  [ ( e ~  1)/f]-  1-- 1 (6) 

where e is the base of the natural  logarithm. An approxi-  
mate 1 -  ~ jackknife interval es t imator  for (4) (average 
degree of dominance) is 

(2 {[(e ~ +is;) - l ) / f ]  -1 - 1}) 1/2, 

(2 {[(e ~  1)/f]-  1 _ 1 })1/2. (7) 

The usefulness of jackknifing is apparent  from inter- 
val est imators (6) and (7). First,  jackknifing provides a 
solution to the interval es t imator  problem where no ob- 
vious or adequate  parametr ic  solution was found. Sec- 
ond, the est imation process is conceptually simple. 

We investigated, in addi t ion to the above model  
(Table 1), a one environmental  effect linear model  
(Table 2). Males and females nested in males variances are 

2 [E(Mm) + E (Mrs) E ( M f ) _  E(Mms)]/r f s O" m = 

and 

af 2 = [E(Mf) - E(Mfs)] / r  s, 

respectively. The males to females variance rat io (am/a f 2  2) 
expressed in terms of EMS and constants  is 

{[E (Mm) + E(Mfs ) - E(Mf)  -- E (Mms)]/r fs} / 

{[E (Me) - E (Mfs)]/r s} 

= {[E (Mm) -- E (M~s)]/[E (Mr) -- E (Mrs)] - 1}/f 

= [E(M*) /E  (M*) - 1]/f, 

Table 2. Analysis of variance for the nested mating design and replications-in-incomplete blocks experiment design in more than one 
location 

Source of variation Degrees of freedom a Mean squares Expected mean squares b 

Incomplete blocks (B) b -  1 
Locations (L) s - l 
L x B  ( b - l ( s - l )  
Replications: L: B b s (r - 1) 
Males (M: B) df m = b (m - 1) 
Females: M(F:M:B) dff = b m ( f - 1 )  
M: B x L  dfms = b(s - 1)(m - I) 
F :M:B x L dffs= b ( s - 1 ) m ( f - 1 )  
Residual b s (r - I) (m f - l) 

Mm 2 2 2 f a ~  + r fs~r2 O" e -~- r O'fs --~ r s o" f - t - r  

M r a~ + ra L +rsa~ 
a e + raes +rfa~.s M m  s 2 2 2 

M f  s 2 2 O" e + rO ' fs  

a S is the number of locations, and b is the number of incomplete blocks, r is the number of replications, and m is the number of male 
and f the number of female parents used to produce nested mating design progenies for one incomplete block 
b 2 is the male parent, a~ z is the female parent nested in male parent, azs is the male parent x location interaction, ~r~s is the female 0" m 

parent nested in male parent • location interaction, and a~ z is the residual variance 



thus, Q is 

(~_ ~ O" m)/cr m = 0 - 2 / 0  - 2  - -  1 : {[E (M*) / E (M*) - 1]/f} -1 _ 1 

(8) 

where E (M*)  and E(M*)  are l inear functions of EMS. 
Denote  the respective approximate  degrees of freedom 
for M* and M~ (mean square differences corresponding 
to E(M*)  and E (M*)) d ~  and d ~ ,  respectively; where 
d ~  and d ~  are est imated with s tandard  methods  (Sat- 
ter thwaite 1946). 

Assume that  the r andom variable S = [ M * / E ( M * ) ] /  
[M*/E(M*)]  is approximate ly  dis t r ibuted as an F ran- 
dom variable then 

P (F1-, /2:  df~x, df~ ~ S ~ F~/2: df=, df~) ~ 1 - -  

and an approximate  1 -  ~t interval es t imator  for (8) 
(dominance to addit ive genetic variance) is 

[(t,/2: dC~, df~t M ,  / M d -- 1) / f] - ' -- 1, 

[(F~ _ ~/2: dr~, df~ M * / M *  -- 1)/f]-  1 _ 1. (9) 

Average degree of dominance  is 

[2 ({[E (M*) /E  (M*) - 1]/t3 - t _ 1)]~/2, (10) 

thus, an approximate  1 - ~ parametr ic  interval es t imator  
for (10) is 

(2 , , , -1 {[(F,/2:df*,df~ M n / M  d - -  1)/q - 1}) 1/2, 

F . * * ( 2 { [ ( l _ a / 2 : a f * , d f d M n / M d - - l ) / f ] - l - - l } )  1/2, (11) 

Random variable S involves different mean squares 
and EMS in the numera tor  and denominator .  I t  was 
assumed, for the purpose  of defining interval est imators  
(9) and (11), that  d ~  M , / E ( M n )  and d ~  M~' /E (M~) are 
approximate ly  distr ibuted as independent  chi-square 
r andom variables and that  relevant r andom effects are 
normal ly  distributed. The parametr ic  interval est imators  
are, however, non-robus t  (Box 1953; Scheff6 1959) and 
differences between chi-square random variables may  not  
be distr ibuted as chi-square r andom variables (Gaylor  
and Hoppe r  1969). Realized coverage probabi l i t ies  for 
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interval est imators  (9) and  (11) may  be different, perhaps  
greatly different, from stated coverage probabil i t ies  when 
either of these assumptions are not  met (Arvesen 1969; 
Arvesen and Schmitz 1970; Miller  1974 a). Thus, jackknif-  
ing is justified in this case even though simple parametr ic  
interval est imators are available for (9) and (11). 

Jackknifing for the one environmental  effect l inear 
model  proceeds exactly as for the no environmental  effect 
l inear model  except that  it is suggested that  da t a  resam- 
piing consist of deleting all replications and environ- 
ments of one full-sib family from one incomplete  block. 
The main difference in this case is that  In (M n*/Md)* is 
jackknifed instead of ln (M' , /M~) ;  thus, pseudovalue  
means and variances have interpreta t ions  identical to 
those in (6) and (7) but  for a different E M S  ratio. 

An approximate  1 - a jackknife interval es t imator  for 
(8), jackknif ing In (M*/M~'), is 

[ ( e ~  [(e(J-WJ)-l)/f]-l-1 (12) 

and for (10) is 

{2 [(e ~ - 1 ) / q -  1 _ 1} 1/2, 

{2 [(e ~ - 1 ) / q -  1 _ 1} 1/2. (13) 

Factorial mating design 

Results are given first for the zero environmental  effects 
l inear model  (Table 3) and  second for the one environ- 
mental  effect l inear model  (Table 4) for the factorial  mat-  
ing design. The males variance was used in all expres- 
sions, however, the females or males and females pooled 
variances may  also be used. 

Dominance  to additive genetic variance expressed in 
terms of  EMS is 

2 2 2 2 
0" d/O" a ~--- O'mf/O" m 

= ({[E (Mm)- E (Me)]/[E ( M m f ) -  E (Me)] - 1}/0 -1 

----- ({[E ( M r )  - -  E ( M m f ) ] / [ E  (Mmf)  - -  E ( M e ) I } / f ) -  1 

= {[E (M~)/E (M~)]/f)- 1. (14) 

Table 3. Analysis of variance for the factorial mating design and replications-in-incomplete blocks experiment design in one environ- 
ment 

Source of variation Degrees of freedom a Mean square Expected mean square b 

Incomplete blocks (B) 
Replications/B 
Males/B df m = b (m - 1) M~ a 2 + r af 2 + r fa 2 
Females/B dff = b ( f -  1) Mf a~ + r a~ + r m ar 2 
(Males • females)/B dfmf = b (m - 1) ( f -  1) Mmf 0"2 + r ar 2 

2 Residual df~ = b (r - 1) (m f -- 1) M~ a e 

a b is the number of incomplete blocks, r is the number of replications, m is the number of males, and f is the number of females 
b tr e2 is the residual, an, f2 is the males x females nested in incomplete blocks, a 2 is the females nested in incomplete blocks, and tr~2 is 
the males nested in incomplete blocks variance 
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Table 4. Analysis of variance for the factorial mating design and replications-in-incomplete blocks experiment design in more than 
one year 

Source of variance Degrees of freedom a Mean square Expected mean squares b 

Incomplete blocks (B) b -  1 
Years (Y) y - 1 
Y x B  ( b - 1 ) ( y - 1 )  
Replications: Y: B y b (r - t) 
Males: B (M: B) df m = b (m - 1) M m 
Females: B (F: B) d f f=  b (f -- 1) M e 
(M x F):B dfmf =b (m - 0 f f - l )  Mmf 
M: B x Y  dfmy = b ( m - l ) ( y - 1  ) Mmy 
F: B x Y dffy = b ( f -  l)(y - 1 )  Mfy 
(M x F): B x Y  dfmfy = b(m - l ) ( f -  l ) ( y -  1 ) Mmfy 
Residual y b (r - 1) (m f -  1) 

a 2 + r a i l , +  r f a ~ y + r y a ~ f  +ryfa2m 
2 2 2 r y a 2 f + r y m a 2  0" e -~ r 0"mfy q- r m 0"fy + 

a2 + r a ~ f y +  rya2f  
~ + r~fy + rf~ L 

2 2 2 
t7 e + r O'mfy + r m a f y  

2 2 G @ r O'mfy 

a r is the number of replications nested in incomplete blocks, b is the number of incomplete blocks, m is the number of male and f 
the number of female parents used to produce factorial mating design progenies for one incomplete block, and y is the number of years 
b am2 is the male and a~ the female parent, a~f is the male x female parent interaction, a i r  is the male parent x year and a~y the female 
parent x year interaction, O'2mfy is the male parent x female parent x year interaction, and a~ is the residual variance 

A parametr ic  interval es t imator  was not  defined for 
(14) because E(Mmf) is involved in the numera tor  and 
denominator .  Jackknife interval est imators may, never- 
theless, be defined for (14) based on jackknifing 
ln M'n/M~). The jackknife point  estimate for (14) is 
(e J / f ) - i .  An approximate  1 - ~ jackknife interval estima- 
tor  for (14) is 

[(eO+i.,,_,s~/g,/~)lf]- i, [(e o-t., ,_,sm,/~)/f]- i 

= [(eU/f) - i ,  (eL/f) -11 

where J is the pseudovalue mean and jackknife point  
est imate and Sj is the pseudovalue variance for 
in [E (M' , ) /E  (M~)I. 

The number  of pseudovalues used in the calculation 
of J and Sj depends, as before, on how the original da ta  
are subsetted. Balanced da ta  results from eliminating one 
subset containing all replications of one half-sib family 
from each incomplete block. If m = 4, f =  4, and b = 10, 
where m is the number  of males, f is the number  of fe- 
males, and b is the number  of incomplete blocks, then the 
balanced da ta  resampling plan produces m + f = 8 pseu- 
dovalues. This is obviously inadequate  and inefficient. A 
da ta  resampling plan that  results in subsets consisting of 
all replications of one full-sib family from one incomplete 
block gives m fb  = 160 pseudovalues.  We suggest, analo-  
gous to the nested mat ing design, using this resampling 
plan because it produces  m fb  pseudovalues,  is efficient, 
and results in equivalence between pseudovalue and full- 
sib family numbers.  Fi t t ing constants  variance est imation 
(Searle 1971) may  be used to analyze the resampled data. 

Average degree of dominance  expressed in terms of 
EMS is 

(2 {[E(M',) /E(MS)]/f} 1)1/2 (15) 

where E (M'n), E(M~), and f were defined in (14). A jack-  
knife point  es t imator  for (15) is [2 (e J/f)- 111/2. An approxi-  
mate 1 - e  jackknife interval es t imator  for (15) is 

[2(eU/f) - i] , /2,  [2(eL/f) -111/2. 

We investigated a one environmental  effect linear 
model  (Table 4) in addi t ion to the zero environmental  
effects linear model  (Table 3). The males variance was 
used in all expressions, however, the females or males and 
females pooled variance may be used. 

Dominance  to additive genetic variance expressed in 
terms of EMS is 

2 2 2 2 
r d /0"  a = O'mf/O" m 

= ( { [ E  ( M m )  - E ( M m y ) ]  / [ E  ( M m f )  - -  E ( M m f y ) ]  - -  1 } / f ) - i  

= {[E ( M ' ) / E  (M~) - 11/f} - 1. (16) 

E (M~) and E(M~) do not  involve common EMS, there- 
fore, dr" M~/E(M~)  and d ~  M,~/E(Mg) may  be approxi-  
mately distr ibuted as independent  chi-square random 
variables and T = [M~'/E (M~)I/[M~/E (M~)I may  be ap- 
proximately  distr ibuted as an F random variable. An 
approximate  parametr ic  interval es t imator  for (17) based 
on T is 

[(F~/2 : dfa, df~ M ' / M ~  -- 1)/f]- i, 

[(F i-~/2: dfa, dfa M"/M~ -- 1)/f]- 1. 

Average degree of dominance expressed in terms of 
EMS is 

(2 {[E (M~)/E (M~) - 1]/f}- x)i/2. (17) 



An approximate 1 - a parametric interval estimator for 
(17) is 

2r/F M " / M "  1)/f]- l}  1/2, 
IX ~]2 : df~,, df.~ n t d - -  

{2 [(F 1 _,,/z: df~., dfa M :  / M,~ -- 1)/f]- 1} 1/2. 

Jackknife point and interval estimators for (15) and 
(17) were defined as in previous examples. Data  are sub- 
setted so that each subset contains every replication of 
one full-sib family from one incomplete block and all 
environments. Resampled data are unbalanced, there- 
fore, fitting constants estimation may be used to obtain 
point estimates. The jackknifed statistic is ln (M' /Ma) .  
The jackknife point estimate for (15) is [ ( e J - - 1 ) / f ]  - i  

where J is the pseudovalue mean. An approximate 1 - c~ 
jackknife interval estimator for (15) is 

[(eL--1)/f] -~, [(eU--1)/f] -1. 

Jackknife point and interval estimators for (17) are 
{ 2  [ ( e  J - -  1)/f]- 1}1/2 and 

{2[(e L --1)/f1-1} l/z, {2 [(e U - -1 ) / f ] - l}  i/z, 

respectively. 

Backcross mating design 

The analysis for backcross mating design (mating design 
III) progenies in a replications-in-incomplete blocks ex- 
periment design in one environment is given in Table 5. 
Dominance to additive genetic variance expressed in 
terms of EMS is 

2 2 2 2 
O'd/O" a - -  O ' r n p / 4  O" m 

= {2 [E (Mm) - -  E (Me)]/[E(M=p) - E (Me)]} -1 

= [2 E (M',)/E (M~)]- 1. (18) 

Parametric intervals were not defined for (18) because 
E (Me) is involved in numerator  and denominator  EMS 
differences. An approximate 1 - ~ jackknife interval esti- 
mator  was, however, defined for (18) consistent with the 
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approach used in previous sections. The jackknife point 
estimate for (18) is (2eJ) - 1. An approximate 1 - ~  jack- 
knife interval estimator for (18), based on jackknifing 
in (M'./M~), is 

[2 e (J + tu: g -1  SJ/g I/2)] -- I [2 e o - t.:,_, sj/g~/2)] _ : 

=(2eU) -1, (2eL) - i  

where J is the pseudovalue mean or jackknife point es- 
timate and Sj is the pseudovalue variance for In (M'./Ma). 

Average degree of dominance expressed in terms of 
EMS is 

{[E (M~)/E (M ' ) ] -  1}1/2.  (19) 

The jackknife point estimate for (19) is [(eJ)-l] 1/z. An 
approximate 1 - ~ jackknife interval estimator for (19) is 

[(e U)- 1]llZ, [(e L)- l]lfZ. 

We investigated a one environmental effect linear 
model for the backcross mating design (Table 6) in addi- 
tion to the zero environmental effects linear model 
(Table 5). Dominance to additive genetic variance ex- 
pressed in terms of EMS is 

2 2 2 2 
O ' d / 0 "  a = O ' m p / 4  O" m 

- -  {2 [E (Mm) - -  E (Mm,)l/[E (M=p) - E (Me)l}-1 

= [2 E (M~)/E (M~)]- 1. (20) 

E (M:) and E (M~) do not involve common EMS, there- 
fore, df~ M : / E  (M:) and df~' M~/E (M~) may be approxi- 
mately distributed as independent chi-square random 
variables and U = [ M ' / E ( M ' ) ] / M ~ / E ( M ~ ) ]  may be ap- 
proximately distributed as an F random variable. An 
approximate parametric 1 - ~ interval estimator for (20) 
based on U is 

(2F r~a,, / ~, ,~-  1, (2F1 M,,tM,,~- 1 at/2:df~x,df'~'~nt~*~dl - ~ / 2  : d f ~ ,  df~ n /  d )  " 

Average degree of dominance expressed in terms of EMS 
is 

(2 2 2 1/2 2 ~2 ~t/2 rid/O'a) = (0"rap/2 ore) = {[E (M; ) /E  (M~)]- 1} 1/2. 
(21) 

Table 5. Analysis of variance for the backcross mating design and replications-in-incomplete blocks experiment design in one 
environment 

Source of variation Degrees of freedom a Mean square Expected mean square b 

Incomplete blocks (B) b -  1 
Replications: B b (r -- 1) 
Inbred Lines (P: B) b (p - 1) 
Males (M :B) b (m - 1) M m a~ 2 + p r ~2 m 
(M x P):B b (m - l) (p - 1 )  Mmp a 2 + ra~p 
Residual b (r - 1) (p m - 1) Me a, 2 

a b is the number of incomplete blocks, r is the number of replications, m is the number of males used to produce backcross progenies, 
and p = 2 is the number of inbred lines 
b a2 is the male parent, a~p is the male parent x inbred line parent interaction, and a~ is the residual variance 
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Table 6. Analysis of variance for the backcross mating design and replications-in-incomplete blocks experiment design in more than 
one location 

Source of variation Degrees of freedom a Mean square Expected mean square b 

Incomplete blocks (B) b -  1 
Locations (L) s - 1 
L x B ( b - l ) ( s - 1 )  
Replications: L: B b s (r - 1) 
Inbred Lines: B (P: B) b (p - 1) 
L x P:B (s --1) (p --1) 
Males: (M:B) b ( m - 1 )  
(M x P):B b(m -1 ) (p  - 1 )  
L x  M:B b (m - l) (s - 1 )  
(L • M • P):B b (m - 1 )  (s - 1 )  (p - 1 )  
Residual b s (r - 1) (p m - 1) 

2+ra2mpl+rp  2 + r p s a 2  M m  tre am 1 
Mmp o'e 2 + r a2mpl + r s 0"2rap 

2 2 2 Mint O" e + ramp~ + rpamt 
Mm.l ~2 + r a2m.l 

a b is the number of incomplete blocks, s is the number of locations, r is the number of replications, m is the number of male parents 
used to produce backcross lines, and p = 2 is the number of inbred lines 
b tr~ is the male parent, a2p is the male parent x inbred line parent interaction, a21 is the male parent x location, a2pl is the male 
parent x inbred line parent x location interaction, and a~ is the residual variance 

An  app rox ima te  1 - ~ paramet r ic  in terval  es t imator  for 
(21) is 

"~ll~t/?tll,t~- 1]1 /2  
[(Fcc/2 : df~,  d fa  l".tn / xVJtd! .I , 

[(Vt - =/2: df;~, df~i M~ / M ~ ) -  1] 1/2. 

Jackknife  po in t  an d  in terval  es t imators  for (21), based 
on  jackkni f ing  In ( M ' / M ~ ) ,  are [(e J) - 111/2 and  

[(eV)-l]l/2, [(eL)-1] l/z, 

respectively, where J is the pseudova lue  m e a n  or  jack-  
knife po in t  es t imate  a n d  Sj is the pseudova lue  var iance  
for In ( M ' / M ~ ) .  
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